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C/Dr Moliner, 50. 46100 Burjassot (València), Spain
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By integrating data from comparative genomics and large-scale deletion studies, we previously proposed
a minimal gene set comprising 206 protein-coding genes. To evaluate the consistency of the metabolism
encoded by such a minimal genome, we have carried out a series of computational analyses. Firstly, the
topology of the minimal metabolism was compared with that of the reconstructed networks from natural
bacterial genomes. Secondly, the robustness of the metabolic network was evaluated by simulated
mutagenesis and,finally, thestoichiometric consistency wasassessedbyautomaticallyderiving the steady-
state solutions from thereaction set. Theresults indicated that the proposedminimalmetabolism presents
stoichiometric consistency and that it is organized as a complex power-law network with topological
parameters falling within the expected range for a natural metabolism of its size. The robustness
analyses revealed that most random mutations do not alter the topology of the network significantly, but
do cause significant damage by preventing the synthesis of several compounds or compromising the
stoichiometric consistency of the metabolism. The implications that these results have on the origins of
metabolic complexity and the theoretical design of an artificial minimal cell are discussed.

Keywords: minimal genome; metabolic inference; elementary flux mode; scale-free network;
network topology; power law
1. INTRODUCTION
One century ago, the challenge of synthesizing a living

cell was considered the ‘ideal goal’ of biology (Loeb

1906). Nowadays, while working on the development of

the appropriate technology for actually ‘synthesizing

life’, scientists are trying to design artificial minimal life

forms in two opposite but complementary ways, defined

as the bottom-up and the top-down approaches (Luisi

2002; Szathmáry 2005). The bottom-up approach

aspires at constructing the artificial simplest chemical

supersystem or protocell by assembling the basic non-

living components that confer a system the properties of

living matter (Szostak et al. 2001; Luisi et al. 2006).

Although no such experimental system exists yet, the

recent advances in genomic technology and membrane

biophysics make the possibility of synthesizing proto-

cells an imaginable goal (Pohorille & Deamer 2002;

Rasmussen et al. 2004; Szathmáry 2005), which will

provide fascinating insights into the essence of cellular

life and may give some clues about how life first evolved

on earth. On the other side, the top-down approach

aims at constructing a living cell by simplifying existing
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small genomes, taking the information about minimal
genomes already obtained from computational and

experimental studies as a start. It is generally admitted

that a top-down approach will not achieve the

construction of the minimal possible cell in chemical

terms, since all extant cells have very complex

transcription and translation systems, and it seems
unrealistic that the simplest living chemical system

would require such components. However, this

approach is helping to understand which functions are

essential for modern cells, an information that can be

applied to the synthesis of modern living cells. The

underlying idea, presented a few years ago by Craig
Venter, is to build a synthetic chromosome containing

the necessary information to perform all the essential

living functions, and insert it into a cell to generate a

semi-synthetic minimal living cell (Zimmer 2003).

Several challenges must be overcome before such a

goal is achieved. On one hand, with our current
knowledge, it is not completely obvious which genes

should be encoded by this genome, in which order they

must be present, which regulatory sequences must be

included, or how to put the genome to work once it is

introduced into a cell. On the other hand, it is necessary

to improve the present technology in order to be able to
accurately synthesize the long stretch of DNA necessary
This journal is q 2007 The Royal Society
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to make a minimal genome. While recent methodo-
logical advances in long DNA molecule synthesis,
improving both accuracy and pace, have been reported
(Smith et al. 2003; Kodumal et al. 2004; Shevchuk et al.
2004), several attempts have been made to define the
minimal genome, i.e. the repertoire of genes that is
necessary and sufficient to support cellular life, as a first
step towards the synthesis of such a minimal semi-
synthetic living cell.

Even the simplest unicellular organisms on earth
display an amazing degree of complexity. But such
complexity does not seem to be a necessary attribute of
cellular life, since modern cells possess many functions
that would be dispensable in an ideally controlled
environment. A minimal genome must contain the
smallest number of genetic elements sufficient to allow
the cells to maintain metabolic homeostasis, reproduce
and evolve, the three main properties of living beings
(Luisi et al. 2002, 2006; Islas et al. 2004; Ruiz-Mirazo
et al. 2004), in the most favourable scenario, i.e. in a rich
environment in which all essential nutrients are provided,
and in the absence of any adverse factors (Koonin 2000).

The increasing knowledge on complete genomes
from bacteria makes these prokaryotes a suitable model
to try to define what a modern minimal genome should
be like. Comparative genomic analyses have proven to
be very useful to understand the essential functions that
define a living cell, based on the assumption that genes
conserved across large phylogenetic distances are good
candidates to be considered essential. The first
comparative genomic analysis was performed soon
after the two first bacterial genome sequences, those
from Haemophilus influenzae (Fleischmann et al. 1995)
and Mycoplasma genitalium (Fraser et al. 1995), were
completed. This comparison resulted in the recon-
struction of a first minimal gene set comprising only
256 genes (Mushegian & Koonin 1996). More recent
approaches to the minimal gene set have been based in
the comparison of the reduced genomes of insect
endosymbionts and intracellular parasites. All these
species have experienced a massive genome reduction
after the establishment of their respective bacteria–host
relationships, due to a relaxed selection on the
maintenance of genes that are rendered unnecessary
in the protected environment provided by the host.
Therefore, most of the genes shared by these genomes
are likely to code for essential cellular functions. The
comparison among five endosymbionts and the epicel-
lular parasite, M. genitalium, revealed that they share
only 180 housekeeping protein-coding genes (Gil et al.
2004). This number was further reduced to 156 when
the intracellular parasites Rickettsia prowazekii and
Chlamydia trachomatis were included in the comparison
(Klasson & Andersson 2004). When 21 complete
genomes of bacteria, archaea and eukaryotes were
compared (Koonin 2000), it was suggested that a set of
approximately 150 genes would be sufficient to
maintain a living cell.

Complementarily, experimental approaches have
been used to identify genes that are essential under
particular growth conditions. Several genome-wide
analyses have been performed using three different
strategies: massive transposon mutagenesis, use of
antisense RNA to inhibit gene expression and
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systematic inactivation of each individual gene present
in a genome (reviewed in Gil et al. 2004). Recently,
Glass et al. (2006) have defined a set of essential genes in
M. genitalium using transposon mutagenesis. The
authors proposed that 387 protein-coding and 43
structural RNA genes would suffice to support cellular,
heterotrophic life in a chemically complex environment.

In summary, all experimental approaches yield
minimal gene sets that are compatible with the
comparative genomics inferences. However, since all
present living cells possess common genetic infor-
mation-processing systems, both computational and
experimental approaches provide sets of essential genes
that are enriched in genes involved in such function,
mainly encoding the components of the transcriptional
apparatus, and contain relatively few genes for meta-
bolic enzymes. Yet, the minimal genome must include
the necessary genes to maintain a minimal metabolism
in order to achieve metabolic homeostasis, one of the
essential functions that define life (Peretó 2005;
Szathmáry et al. 2005). It should be stressed that, from
a metabolic point of view, there is no conceptual or
experimental support for the existence of just one form
of minimal bacterial cell and, therefore, a diversity of
minimal ecologically dependent metabolic charts could
sustain a universal genetic machinery. Nevertheless,
taking into account all previous computational and
experimental approaches to define a minimal genome,
we proposed a minimal set for life composed by 206
protein-coding genes (Gil et al. 2004) in which all genes
involved in essential pathways to maintain one possible
form of a coherent minimal metabolism were included.

In the present paper, we emphasize and deepen our
previous work on that minimal genome, exploring some
structural properties of the inferred metabolic network,
namely the stoichiometric and topological consistency
and the robustness of the proposed minimal metabolism.
2. MATERIAL AND METHODS
(a) Metabolic network inference

To investigate the topological properties of a minimal

metabolism and compare it with the metabolisms from extant

bacteria, the metabolic network of each genome was inferred

from the corresponding annotated gene functions. The

metabolic network reconstruction procedure used here was

initially described in Gabaldón & Huynen (2003) and

consists of an automatic mapping of the annotated gene

functions onto KEGG metabolic pathways (Kaneisha &

Goto 2000). The reaction database was derived from the

LIGAND v. 35.0 database, from which polymerization

reactions and reactions involving macromolecules were

filtered out. To eliminate connections through frequent

metabolites such as cofactors (Schuster et al. 2002), we only

considered connections through metabolites represented in

the pathway maps of the KEGG database. When more than

one substrate, or more than one product, were represented

for a given reaction in a pathway map, we included

connections only through pairs of compounds that have at

least one carbon atom in common on the two sides of the

reaction. For this purpose, we used the atomic mappings of

the corresponding reactions annotated in the RPAIR database

(Hattori et al. 2003). Finally, we automatically checked for

errors in the directionality of the reaction detected by Ma &

Zeng (2003) and made efforts to correct additional obvious
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Figure 1. A simplified overview of the metabolic network implemented by a hypothetical minimal genome of 208 protein-coding
genes derived by an integrated approach (modified from Gil et al. 2004). Names of substrates freely available for the hypothetical
minimal cell are represented inside a frame. Two sink metabolites are labelled in grey. Coenzyme metabolism (except the folate
metabolism linked to TTP biosynthesis) is shown in the inset and was not considered in the stoichiometric analysis. Wider
arrows in the glycolytic pathway indicate the two steps where ATP is synthesized by substrate-level phosphorylation.
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inconsistencies. The final database comprised a total 8115

reactions. To reconstruct the metabolic network of a genome,

the annotated functions of all encoded genes were mapped

onto the above-mentioned reaction database, and a file

describing the existing network connections was generated.

This information was represented in the form of a directed

graph in which nodes and edges represent metabolites and

enzymatic connections between them, respectively. This

allows for the use of mechanical statistics and graph theory

to describe the main topological properties of the recon-

structed networks (see below).

(b) Topological analysis

The following topological properties of the reconstructed

networks were computed.

Connection degree (ki) distribution. The connection degree of

a given node is defined as the number of metabolites directly

linked to it. When the direction of the reaction is considered, ki

can be decomposed into input and output connection degrees

representing the number of connections starting or ending at

that metabolite, respectively. The frequency distribution of all

types of connection degrees was investigated to ascertain

whether they followed a power-law distribution (P(x)ZKxa,

where x is the variable and K and a are constants). Power laws

were detected as linear relations in logarithmic scales.

Clustering coefficient (C ). For a given metabolite i, directly

connected to k i metabolites in the network, the clustering

coefficient (Ci) is defined as the ratio between the number of

connecting edges existing among the k i metabolites and the

theoretical maximum of connections (every node in a cluster

connected to all the others), k i(k iK1)/2. The clustering
Phil. Trans. R. Soc. B (2007)
coefficient of the network (C ) is the average of all individual

Ci’s. Note that, in this case, directionality of the connection is

not taken into account to compute the clustering coefficient;

therefore, networks are treated as undirected graphs. In a

random network with n nodes and e edges, since edges

are distributed randomly, the average clustering coefficient is

CZ2e/n2 (Albert & Barabasi 2002).

Average path length (L). The path length (l ij) is defined as

the number of edges in the shortest pathway from metabolite i

to metabolite j. Note that directionality of the reaction is

considered in this case, so that the path from metabolite i to j

is not necessarily the same as the path from j to i. All reachable

metabolites in the network were identified by the ‘breath first

searching’ algorithm (Broder et al. 2000), and the average

path length of the network (L) was computed averaging path

lengths over all pairs of connected metabolites in the network.

Network diameter (D) is defined as the length of the

longest pathway among all shortest pathways in the network

(Albert & Barabasi 2002).

(c) Stoichiometric analysis

A reduced theoretical network, derived from a revised version

of the minimal genome proposed by Gil et al. (2004) (figure 1

and table 1), composed by 208 protein-coding genes, was

expressed as a set of stoichiometrically adjusted reactions,

and the reversible/irreversible character of each reaction was

assigned (table 2). Although coenzymes are essential

chemical reagents for some metabolic reactions (e.g. thiamine

pyrophosphate for transketolase) their metabolism (except

folate reactions linked to TTP biosynthesis, see figure 1 and

inset) was not considered in the following analysis because



Table 1. Classification of genes, and enzymatic steps catalysed
by the associated encoded proteins, included in a minimal
metabolism for bacterial life (modified from Gil et al. 2004).

pathways genes enzymatic steps

glycolysis from glucose to lactate 13 11
pentose phosphate pathway 5 7
phospholipid biosynthesis 6 6
biosynthesis of nucleotides 15 26

total 39 50
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coenzymes play essentially a catalytic function and do not

affect the stoichiometric analysis. To perform the structural

analysis of the metabolic network, we used METATOOL

(Pfeiffer et al. 1999), an efficient algorithm for computing

all metabolic pathways that are feasible in an inferred

network, using reaction equations as input. Once the set of

metabolites (external—source substrates k with an input flux

Jik, and k sink products with an output flux Jok—and

internal) and reactions of the network are defined, METATOOL

calculates the stoichiometric matrix and several structural

properties of the system. Among those, the following are

remarkable (Pfeiffer et al. 1999; Schuster et al. 2002).

The ‘enzyme subsets’ (ES) are groups of enzymes that, in

all steady states of the system, operate together in fixed flux

proportions, i.e. with a constant stoichiometry.

The ‘elementary flux modes’ (EFM) are flux patterns

which can be accomplished at steady state (with all the

irreversible reactions proceeding in the appropriate direction)

and that cannot be decomposed into simpler flux distri-

butions. An EFM can be characterized by indicating which

enzymes are involved and their respective flux proportions.

Except for internal cycles, the EMF set informs on the

possible pathways that convert input substrates into output

products throughout the system. Each EMF disappears when

any of its associated enzymes is eliminated.

The ‘convex basis’ informs on the vectorial space

dimension in which all the system solutions can be

represented. It also displays a base of that space for which

all the elements are EFM. Any steady-state solution can thus

be represented as a linear combination of elements of the

convex basis with all coefficients being positive.
3. RESULTS
(a) Topological consistency of a minimal

metabolic network

Several groups have recently investigated the system
properties that emerge from the network organization
of natural metabolisms to gain insights on the
organizational and evolutionary principles of the
metabolism of living organisms (Jeong et al. 2000;
Wagner & Fell 2001; Ma & Zeng 2003; Arita 2004;
Tanaka 2005). Albeit deriving quite different con-
clusions, they all found that natural metabolisms can be
described as networks following a power-law distri-
bution of connectivities, i.e. most metabolites exhibit
few connections, while a few densely connected
metabolites act as hubs in the network. We have
previously proposed a minimal metabolism based on
different theoretical and experimental approaches (Gil
et al. 2004). To assess whether the reconstructed
minimal metabolism is consistent in terms of its
topological organization, and to investigate whether
certain topological parameters of the inferred
Phil. Trans. R. Soc. B (2007)
metabolisms are dependent on the genome size, we
compared the topology of the automatically recon-
structed metabolic network from the theoretically
inferred minimal genome with those inferred from 21
natural bacterial genomes, which represent different
bacterial taxa and genome sizes (table 3). In terms of
the size of the inferred network (n) as well as all
topological measures analysed, the metabolism of the
theoretically inferred minimal gene set behaves as
expected for a natural genome of its size. We found
that, amid a great degree of variation, some topological
properties, such as the average path length (L) and the
network diameter (D), tend to decrease with the size of
the network (n) rather than that of the genome (table 3;
see Gabaldón et al. in press for details).

(b) Clustering coefficient analysis of natural

and randomized metabolic networks

A general characteristic of some complex networks is
the existence of cliques, groups of nodes that are more
densely interconnected between them than with the
rest of the network. This is quantified by the clustering
coefficient of the network (C ). In our case, the network
clustering coefficient of all studied genomes range from
0.027 to 0.075, with a slight tendency to increase with
the size of the network (table 3). We compared these
values with the expected clustering coefficient for the
corresponding randomized networks (Cr), i.e. a net-
work with the same number of nodes and edges in
which connections are distributed randomly. In all
cases, the expected clustering coefficient for the
random networks is much smaller than the natural
ones, ranging from 0.00150 to 0.00977 (table 3).
However, the deviation from the random scenario
(measured as the ratio between the observed clustering
coefficient and the expected value for a randomized
network) is far from uniform, showing a linear
relationship with the network size (figure 2). These
differences are achieved despite a great similarity in the
average number of connections per node, which was
found to be in the range of 1.2–1.6 for all studied
networks, including that of the minimal genome (1.25).

(c) Robustness analysis of a minimal

metabolic network

As a direct consequence of their power-law connec-
tivity distribution, complex networks are sensitive to
directed attacks but resistant to random errors. That is,
the sequential removal of the most connected nodes
(directed attack) leads to sharp variations in some
topological parameters such as the average path length,
whereas random removal of nodes and/or edges do not
alter the topology of the network significantly. These
tendencies have also been reported for natural
metabolic networks, which have been shown to be
robust and error tolerant (Jeong et al. 2000).

To investigate the robustness of the minimal
metabolic network against random mutations, we
previously simulated a series of random mutation
attacks in which up to 20 enzymatic activities encoded
by the minimal genome were sequentially removed
(Gabaldón et al. in press). The results showed a
behaviour similar to natural networks: most mutations
had a limited effect in the overall topology, varying in



Table 2. Metabolite and reaction input for the network shown in figure 1. (Metabolite abbreviations are the usual in biochemistry,
except for pal (palmitoyl CoA), peta (phosphatidylethanolamine), pser (phosphatidylserine), mthf (5,10-methylene-
tetrahydrofolate). Input fluxes (for k source substrate) and output fluxes (for k sink product) are indicated by Jik and Jok,
respectively. For redox coenzyme NADC/NADH, a reversible flux Jk is defined. Reversible and irreversible reactions are
indicated, in the reaction equations, by the symbols 4 and /, respectively. Last column shows the corresponding Mycoplasma
genitalium genes considered as essential by Glass et al. (2006). The four cases in boldface correspond to non-essential genes. n.i.,
non-identified in M. genitalium. Input file for METATOOL is available upon request to the corresponding author.)

external metabolites internal metabolites

metabolite input
sources: glc ( Ji1), pal ( Ji2), ade ( Ji3), gua ( Ji4), ura ( Ji5), ser

( Ji6), p ( Ji7), nadh ( Jk1), nad ( Jk2)
sinks: lac ( Jo1), peta ( Jo2), atp ( Jo3), ctp ( Jo4), gtp ( Jo5), utp

( Jo6), datp ( Jo7), dctp ( Jo8), dgtp ( Jo9), ttp ( Jo10), gly
( Jo11)

g6p, f6p, fbp, gdp, dhp, bpg, 3pg, 2pg, pep, pyr, g3p, mag, dag,
cdp-dag, pser, sbp, s7p, rip, xip, e4p, rup, prpp, amp, gmp,
cmp, ump, tmp, adp, gdp, cdp, udp, dump, dadp, dgdp,
dcdp, dudp, dutp, tdp, mthf, dhf, thf, pp

EC name abbreviation input reaction equations Glass et al. (2006)

enzyme and reaction input
2.7.1.69 phosphotransferase system PTS glcCpep/g6pCpyr MG041, 069, 429
5.3.1.9 glucose-6-phosphate isomerase PGI g6p4f6p MG111
2.7.1.11 6-phosphofructokinase PFK f6pCatp /fbpCadp MG215
4.1.2.13 fructose-1,6-bisphosphate aldolase FBA fbp4gdpCdhp MG023
5.3.1.1 triose-phosphate isomerase TPI gdp4dhp MG431
1.2.1.12 glyceraldehyde-3-phosphate dehydro-

genase
GAP gdpCnadCp4bpgCnadh MG301

2.7.2.3 phosphoglycerate kinase PGK bpgCadp43pgCatp MG300
5.4.2.1 phosphoglycerate mutase GPM 3pg42pg MG430
4.2.1.11 enolase ENO 2pg4pep MG407
2.7.1.40 pyruvate kinase PYK pepCadp/pyrCatp MG216
1.1.1.27 lactate dehydrogenase LDH pyrCnadh4lacCnad MG460

1.1.1.94 sn-glycerol-3-phosphate dehydrogenase GPS dhpCnadh/g3pCnad n.i.a

2.3.1.15 sn-glycerol-3-phosphate acyltransferase PLSb g3pCpal/mag n.i.
2.3.1.51 1-acyl-sn-glycerol-3-phosphate

acyltransferase
PLSc magCpal/dag MG212

2.7.7.41 phosphatidate cytidyltransferase CDS dagCctp/cdp-dagCpp MG437

2.7.8.8 phosphatidylserine synthase PSS cdp-dagCser/pserCcmp n.i.
4.1.1.65 phosphatidylserine decarboxylase PSD pser/peta n.i.
4.1.2.13 fructose-1,6-bisphosphate aldolase FBA2 gdpCe4p4sbp MG023
3.1.3.37b sedoheptulose-1,7-bisphosphatase SPH sbp/s7pCp n.i.
2.2.1.1 transketolase TKT gdpCs7p4ripCxip MG066
2.2.1.1 transketolase TKT2 e4pCxip4f6pCgdp MG066
5.1.3.1 ribulose-phosphate 3-epimerase RPE xip4rup MG112

5.3.1.6 ribose-5-phosphate isomerase RPI rup4rip MG396
2.7.6.1 phosphoribosylpyrophosphate synthase PRS ripCatp/prppCamp MG058
2.4.2.8 hypoxanthine phosphoribosyltransferase HPT prppCade/ampCpp MG276
2.4.2.8 hypoxanthine phosphoribosyltransferase HPT2 prppCgua/gmpCpp MG458
2.4.2.9 uracil phosphoribosyltransferase UPP prppCura/umpCpp MG030
3.6.1.1 inorganic pyrophosphatase PPA pp/2p MG351
2.7.4.3 adenylate kinase ADK ampCatp/2adp MG171
2.7.4.8 guanylate kinase GMK gmpCatp/gdpCadp MG107
2.7.4.14b cytidylate kinase CMK umpCatp/udpCadp MG330
2.7.4.14 cytidylate kinase CMK2 cmpCatp/cdpCadp MG330
2.7.4.6 nucleoside diphosphate kinase NDK gdpCatp4gtpCadp MG216c

2.7.4.6 nucleoside diphosphate kinase NDK2 udpCatp4utpCadp d

2.7.4.6 nucleoside diphosphate kinase NDK3 dadpCatp4datpCadp MG216c

2.7.4.6 nucleoside diphosphate kinase NDK4 dgdpCatp4dgtpCadp MG216c

2.7.4.6 nucleoside diphosphate kinase NDK5 ctpCadp4cdpCatp d

2.7.4.6 nucleoside diphosphate kinase NDK6 dcdpCatp4dctpCadp d

2.7.4.6 nucleoside diphosphate kinase NDK7 dutpCadp4dudpCatp d

2.7.4.6 nucleoside diphosphate kinase NDK8 tdpCadp4ttpCadp MG034
1.17.4.1 ribonucleoside diphosphate reductase NRD adpCnadh/dadpCnad MG229–MG231
1.17.4.1 ribonucleoside diphosphate reductase NRD2 gdpCnadh/dgdpCnad MG229–MG231
1.17.4.1 ribonucleoside diphosphate reductase NRD3 cdpCnadh/dcdpCnad MG229–MG231
6.3.4.2 CTP synthase PYR utp/ctp n.i.
3.5.4.13 dCTP deaminase DCD dctp/dutp n.i.

(Continued.)
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Table 2. (Continued.)

EC name abbreviation input reaction equations Glass et al. (2006)

2.7.4.9 thymidylate kinase TMK dudpCadp4dumpCatp MG006
2.7.4.9 thymidylate kinase TMK2 tmpCatp4tdpCadp MG006
2.1.1.45 thymidylate synthase THY dumpCmthf/dhfCtmp MG227

1.5.1.3 dihydrofolate reductase DFR dhfCnadh4thfCnad MG228
2.1.2.1 glycine hydroxymethyltransferase GHT serCthf4glyCmthf MG394

a MG039 codes for a non-essential FAD-dependent glycerol-3-phosphate dehydrogenase.
b Sedoheptulose-1,7-bisphosphatase and cytidylate kinase are missing in table 1 of Gil et al. (2004).
c MG216 encodes pyruvate kinase. This glycolytic enzyme can also catalyse the phosphorylation of purine dinucleotides using PEP as a
phosphate donor.
d Mushegian & Koonin (1996) proposed MG264 (dephospho-CoA kinase, EC 2.7.1.24) and MG268 (conserved hypothetical protein) as
candidates for the role of NDK. Both genes are independently dispensable after Glass et al. (2006).

Table 3. Topological parameters of the inferred metabolic networks from the minimal gene set and natural genomes ordered
from high to small size. The size of the genome is expressed by the number of protein-coding genes (p-c genes). n, Number of
nodes; L, average path length; D, network diameter; C, clustering coefficient; Cr, clustering coefficient for random network.

species p-c genes n L D C Cr

Bradyrhizobium japonicum 8317 1282 10.20 35 0.044 0.00150
Streptomyces coelicolor 8154 1119 10.10 29 0.064 0.00174
Mesorhizobium loti 7272 1209 9.71 33 0.055 0.00165
Anabaena sp. 6131 970 9.76 29 0.041 0.00192
Nocardia farcinica 5936 1089 9.79 30 0.047 0.00174
Agrobacterium tumefaciens (w) 5402 1147 9.45 33 0.056 0.00171
Escherichia coli (CFT073) 5379 1120 10.20 34 0.075 0.00201
Escherichia coli (K-12) 4237 1215 10.30 35 0.067 0.00570
Mycobacterium tuberculosis 3991 1139 9.98 31 0.051 0.00167
Clostridium acetobutylicum 3848 784 9.56 25 0.061 0.00246
Synechocystis sp. 3264 918 10.50 30 0.044 0.00192
Brucella melitensis 3198 1197 8.54 31 0.049 0.00161
Lactobacillus plantarum 3059 864 9.64 26 0.067 0.00220
Haemophilus influenzae (d) 1657 775 10.00 30 0.065 0.00250
Prochlorococcus marinus 1760 844 10.50 30 0.045 0.00210
Wolbachia (Bma) 1195 516 8.76 28 0.075 0.00321
Rickettsia prowazekii 886 517 8.41 24 0.042 0.00299
Tropheryma whipplei 839 426 11.60 43 0.027 0.00475
Wigglesworthia brevipalpis 617 561 11.40 35 0.035 0.00308
Blochmannia floridanus 583 634 8.47 26 0.046 0.00273
Buchnera aphidicola 504 443 7.76 25 0.042 0.00395
Mycoplasma genitalium 484 207 7.49 23 0.043 0.00826
Minimal gene set 208 165 5.34 18 0.031 0.00977
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less than 10% the average path length and network

diameter, while the removal of few key enzymatic

activities triggered abrupt reductions of up to 50% in

both parameters. The small size of the network,

however, makes it sensitive to sustained random

attacks, and most simulations (90%) produced a

collapsed network after 20 random mutations. In

contrast, a significant fraction (8–12%) of the

simulations resulted in variations lower than 10% in

the topological parameters of the network. One might

be tempted to conclude from these results that

subtracting those genes whose mutations do not

significantly alter the network topology might further

reduce the proposed minimal gene set. We must keep in

mind, however, that retaining the global topological

properties of a network does not necessarily mean that

the resulting mutated networks are viable. Recently,

Lemke et al. (2004) have introduced a new quantitative

criterion to evaluate the deleterious effect of the

removal of an enzyme from a metabolic network.
Phil. Trans. R. Soc. B (2007)
They showed, for the metabolic network of Escherichia
coli, that the ‘network damage’ (d ), a parameter defined

as the number of metabolites whose production is

prevented by the absence of a given enzyme, correlates

well with the experimentally determined viability of

that mutant. To ascertain whether the proposed

minimal metabolism is also robust regarding this new

parameter, we conducted the same experiment using

the algorithm described by Lemke et al. (2004). The

results (figure 3) indicate that most mutations (76%) in

metabolic enzymes encoded in the minimal genome

prevent the synthesis of at least one compound. This is

in sharp contrast to what was found for the E. coli
metabolic network, in which the vast majority of the

mutations produced no network damage (Lemke et al.
2004). Thus, it appears that a lower redundancy in

enzyme activities in the minimal genome, coupled with

a lack of alternative pathways for the synthesis of most

compounds, compromises the robustness of the

emerging metabolism in terms of the metabolic damage
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Figure 2. Effect of network size on the deviation of the clustering coefficient from the expected random scenario.

0.35

Minimal metabolism structure T. Gabaldón et al. 1757
caused by random mutations. A fragile metabolism is
more in line with the idea of a minimal genome, in
which, by definition, all genes would be essential.
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Figure 3. Network damage analysis for the minimal metabolic
network. Frequency of deletions causing a given network
damage (d ), measured as the number of metabolites whose
synthesis is prevented by that mutation.
(d) Stoichiometric consistency of a minimal

metabolic network

Although the topological analyses of computationally
inferred networks provide important insights into the
system-level organization of the metabolism, it should
be considered that such networks are still a rough
approximation to real metabolisms. For instance, a
network graph representation does not take into
account the stoichiometry of the reactions, a parameter
that might be relevant for assessing the consistency of a
reconstructed network or establishing the effects of a
given mutation. In order to gain further insight into the
proposed minimal metabolism, we derived a reduced
but more realistic model, which includes information
on the stoichiometry of the reactions considered. By
manually editing the automatically reconstructed net-
work, we eliminated isolated reactions caused by wide
substrate specificity, to retain, for each enzyme, only
those reactions that made sense in the context of the
other enzymes present in the minimal genome.
Additionally, the stoichiometric relationships of the
reactions were included in the model and a set of input
and output metabolites were defined based on the
current knowledge of biochemical pathways. Table 2
presents all 50 enzymatic steps with stoichiometric
reactions corresponding to the activities associated with
39 protein-coding genes, accepting that some of them
exhibit wide substrate specificity. Figure 1 represents
the metabolic network derived from this reaction set.
The reaction set was structurally analysed for stoi-
chiometric consistency using the METATOOL program.
As shown in table 4, there are 26 ES, some of which
include just one input or output reaction, and 11 EFM.
The EFM can be represented as a function of the ES
(figure 4). A detailed inspection of ES reveals that those
including input or output fluxes, or that are present in
Phil. Trans. R. Soc. B (2007)
all EFM, cannot be eliminated. Furthermore, ES that
simultaneously participate in EFM 9 and 11 (the only
two containing output fluxes Jo10 and Jo11) are not
dispensable. Therefore, only ES 12 can be eliminated,
since the removal of EFM 1, 8 and 9 still leaves
EFM 11, which contains the output fluxes Jo10 and
Jo11. A closer look to the remaining EFM reveals that
EFM 10 and 11 both contain ES 13 and 17 with the
same stoichiometry, by which they can be grouped into
a single ES (NDK6, NDR3, Jo2, (2 Ji2), PLSb, PLSc,
CDS, PSS, PSD, GPS and CMK2) represented in
figure 5. This transformation results in a new metabolic
map comprising 24 ES when compared with the initial
26. By systematically eliminating each one of the 50
enzymatic reactions, and repeatedly running the
METATOOL program with the remaining 49, we found
that only NDK5 can be removed while maintaining a
coherent metabolism. In all other cases, inconsistencies



Table 4. ES and EFM for the minimal network depicted in figure 1. (The enzymes participating in the ES and EFM are weighted
with their fractional flux. Negative values indicate the reaction is used in the reverse sense. For abbreviations, see table 2.
Schemes for all the ES can be retrieved from: http://bioinfo.cipf.es/tgabaldon/minimal_metabolism.html.)

ES overall reaction participating enzymes and fluxes

1 nadhCserCdctp/nadCJo10CJo11 DFR GHT NDK7 NDK8 TMK1 TMK2 Jo11 Jo10 DCD THY
2 gdpCpyrCadpCp/pepCatpCJo1 ENO GAP GPM LDH PGK Jo1
3 f6pCatp/gdpCdhpCadp FBA PFK
4 gdp4dhp TPI
5 pepCJi1/f6pCpyr PGI PTS Ji1
6 nadhCJk24nadCJk1 KJk1 Jk2
7 f6pC3 gdpC3 atp/pC3 ampC3 prpp TKT1 –TKT2 FBA2 (2 RPE) (2 RPI) SPH (3 PRS)
8 atpCgdp/adpCJo5 NDK1 Jo5
9 2 atpCprppCJi5/ppC2 adpCutp NDK2 Ji5 UPP CMK

10 atpCnadh/nadCJo7 NDK3 Jo7 NRD1
11 atpCnadhCgdp/adpCnadCJo9 NDK4 Jo9 NRD2
12 adpCctp4atpCcdp NDK5
13 atpCnadhCcdp/adpCnadCdctp NDK6 NRD3
14 Ji74p Ji7
15 pp/2 p PPA
16 pepCadp/pyrCatp PYK
17 dhpCatpCnadhCctpCserC2 Ji2/ppCadpC

nadCcdpCJo2
Jo2 (2 Ji2) PLSb PLSc CDS PSS PSD GPS CMK2

18 atp/Jo3 Jo3
19 prppCJi3/ppCamp Ji3 HPT1
20 atpCprppCJi4/ppCadpCGdp Ji4 HPT2 GMK
21 Ji6/ser Ji6
22 atpCamp/2 adp ADK
23 ctp/Jo4 Jo4
24 utp/Jo6 Jo6
25 dctp/Jo8 Jo8
26 utp/ctp PYR

EFM overall reaction participating enzymes function

1 2 glcC2 palCserCpCnadh
Z3 lacCpetaCnad

(3 ENO) (2 FBA) –TPI (3 GAP) (3 GPM) (3 LDH)
(2 PGI) (3 PGK) –NDK5 PPA (2 PTS) (2 PFK) PYK
PLSb PLSc CDS PSS PSD GPS CMK2

membrane phospholipid
synthesis

2 21 glcC6 adeC18p
Z32 lacC6 atp

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP) (16 GPM)
(16 LDH) (10.5 PGI) (16 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 PPA) (10.5 PTS) (9.5 PFK)
(5.5 PYK) SPH (3 PRS) (6 ADK) (3 HPT1)

ATP synthesis

3 21 glcC6 adeC18 pC6nadh
Z32 lacC6 datpC6 nad

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP) (16 GPM)
(16 LDH) (10.5 PGI) (16 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 NDK3) (3 PPA) (10.5 PTS)
(9.5 PFK) (5.5 PYK) SPH (3 PRS) (6 ADK)
(3 HPT1) (3 NRD1)

dATP synthesis

4 21 glcC6 guaC18p
Z32 lacC6 gtp

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP) (16 GPM)
(16 LDH) (10.5 PGI) (16 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 NDK1) (3 PPA) (10.5 PTS)
(9.5 PFK) (5.5 PYK) SPH (3 PRS) (3 ADK)
(3 HPT2) (3 GMK)

GTP synthesis

5 21 glcC6 guaC18 pC6 nadh
Z32 lacC6 dgtpC6 nad

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP) (16 GPM)
(16 LDH) (10.5 PGI) (16 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 NDK4) (3 PPA) (10.5 PTS)
(9.5 PFK) (5.5 PYK) SPH (3 PRS) (3 ADK)
(3 HPT2) (3 GMK) (3 NRD2)

dGTP synthesis

6 21 glcC6 uraC18 p
Z32 lacC6 utp

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP)
(16 GPM) (16 LDH) (10.5 PGI) (16 PGK) TKT1
–TKT2 FBA2 (2 RPE) (2 RPI) (3 NDK2) (3 PPA)
(10.5 PTS) (9.5 PFK) (5.5 PYK) SPH (3 PRS) (3 ADK)
(3 UPP) (3 CMK)

UTP synthesis

7 21 glcC6 uraC18 p
Z32 lacC6 ctp

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP) (16 GPM)
(16 LDH) (10.5 PGI) (16 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 NDK2) (3 PPA) (10.5 PTS)
(9.5 PFK) (5.5 PYK) SPH (3 PRS) (3 ADK)
(3 UPP) (3 CMK) (3 PYR)

CTP synthesis

(Continued.)
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Table 4. (Continued.)

EFM overall reaction participating enzymes function

8 21 glcC6 uraC18 pC6 nadh
Z32 lac C6 dctp C6 nad

(16 ENO) (9.5 FBA) (K9.5 TPI) (16 GAP) (16 GPM)
(16 LDH) (10.5 PGI) (16 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 NDK2) (3 NDK5) (3 NDK6)
(3 PPA) (10.5 PTS) (9.5 PFK) (5.5 PYK) SPH (3 PRS)
(3 ADK) (3 UPP) (3 CMK) (3 NRD3) (3 PYR)

dCTP synthesis

9 21 glcC6 uraC6 ser C18 pC
12 nadhZ32 lacC6 ttpC12
nadC6 gly

(3 DFR) (3 GHT) (16 ENO) (9.5 FBA) (K9.5 TPI)
(16 GAP) (16 GPM) (16 LDH) (10.5 PGI) (16 PGK)
TKT1 –TKT2 FBA2 (2 RPE) (2 RPI) (3 NDK2)
(3 NDK5) (3 NDK6) (3 NDK7) (3 NDK8) (3 TMK1)
(3 TMK2) (3 PPA) (10.5 PTS) (9.5 PFK) (5.5 PYK)
SPH (3 PRS) (3 ADK) (3 UPP) (3 CMK) (3 NRD3)
(3 PYR) (3 DCD) (3 THY)

TTP synthesis

10 33 glcC12 palC6 uraC6 serC
24 pC12 nadhZ50 lacC6
petaC6 dctpC12 nad

(25 ENO) (15.5 FBA) (K12.5 TPI) (25 GAP) (25 GPM)
(25 LDH) (16.5 PGI) (25 PGK) TKT1 –TKT2 FBA2
(2 RPE) (2 RPI) (3 NDK2) (3 NDK6) (6 PPA) (16.5
PTS) (15.5 PFK) (8.5 PYK) (3 PLSb) (3 PLSc)
(3 CDS) (3 PSS) (3 PSD) (3 GPS) SPH (3 PRS)
(3 ADK) (3 UPP) (3 CMK) (3 CMK2) (3 NRD3)
(3 PYR)

membrane phospholipid
and dCTP synthesis

11 33 glcC12 palC6 uraC12 serC
24 pC18 nadhZ50 lacC6
petaC6 ttpC18 nadC6 gly

(3 DFR) (3 GHT) (25 ENO) (15.5 FBA) (K12.5 TPI)
(25 GAP) (25 GPM) (25 LDH) (16.5 PGI) (25 PGK)
TKT1 –TKT2 FBA2 (2 RPE) (2 RPI) (3 NDK2)
(3 NDK6) (3 NDK7) (3 NDK8) (3 TMK1) (3 TMK2)
(6 PPA) (16.5 PTS) (15.5 PFK) (8.5 PYK) (3 PLSb)
(3 PLSc) (3 CDS) (3 PSS) (3 PSD) (3 GPS) SPH
(3 PRS) (3 ADK) (3 UPP) (3 CMK) (3 CMK2)
(3 NRD3) (3 PYR) (3 DCD) (3 THY)

membrane phospholipid
and TTP synthesis
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of the network were revealed by sets of enzymes not
participating in any EFM, inconsistent sets of input
and output metabolites, and significant reductions in
the number of resulting EFM. Thus, NDK5 activity is
clearly dispensable from the stoichiometric point of
view and a reorganized network can be conceived.

The convex vectorial space for the minimal metab-
olism under study shows a dimension (kernel) of 9. The
space basis can be arbitrarily chosen among the EFM,
and since EFM 11 is a linear combination of EFM 1
and 9, we selected all EFM except these two. The
inspection of this general solution for the minimal
network reveals that if ES 12 (NDK5) is eliminated,
the system still keeps all the inputs and output fluxes.
As a consequence, EFM 8 disappears and the kernel
dimension turns into 8, the same as the new number
of EFM.
4. DISCUSSION
Altogether, our results show that some topological
properties of metabolic networks scale down with their
size in natural reduced genomes, although a significant
degree of variation does exist. Most importantly, the
metabolic network from the theoretically inferred
minimal gene set appears to behave as would be
expected for a natural reduced genome of its size.
Regarding the clustering coefficient of the recon-
structed networks, it is remarkable that smaller net-
works are closer to the randomized situation than larger
ones. This finding suggests that the emergence of a
power-law organization from an unorganized, ran-
domly connected network would be easier for networks
with fewer nodes. In terms of the origin of the complex
Phil. Trans. R. Soc. B (2007)
organization of metabolic networks, it can then be

conceived a model in which power-law organization

could have emerged from a random network compris-

ing few enzymes. If power-law organization would

render benefits, this protometabolism could have been

expanded in a way that this topological property would

be maintained. The ratio C/Cr observed for the

proposed minimal metabolism (165 nodes) is close to

three, suggesting that the transition from random to

power-law networks could occur in further reduced

networks. Given the diversity of architectures exhibi-

ting power-law connectivity distribution and the

different mechanisms to originate them (Fox Keller

2005), it will be worth further study of those transi-

tions in the smallest chemically coherent networks. At

any rate, if we assume some sort of chemical

determinism, the structure of the simplest networks

would not be completely random (Morowitz 1992;

Luisi 2003; de Duve 2005).

The robustness of metabolic networks has usually

been evaluated by measuring the effects on several

topological parameters caused by the removal of

enzymes from the network. Attending to such

measures, the proposed minimal network is robust to

random isolated attacks. However, when more subtle

effects are measured, such as the so-called metabolic

damage or effects on the elementary fluxes of the

network, the minimal metabolism turns out to be

fragile. This indicates that although a given mutation

can have little or no effect on the overall topological

properties of a metabolic network, it may indeed

disturb the metabolism in a very drastic way. The use

of simulated mutagenesis and metabolic network
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reconstruction to predict essentiality of proteins, to

subsequently use this information to identify drug

targets, has been gaining ground in recent years

(Lemke et al. 2004). Our results advocate for the use

of more complex models in such studies, in order to

capture the non-topological effects of the removal of

metabolic enzymes.

The metabolic fragility observed for the minimal

genome is expected for a network in which, by

definition, all components are essential. Yet, we have

shown that the NDK5 activity can be removed, leading

to a smaller metabolic subset potentially able to

maintain metabolic homeostasis. Nevertheless, the

net effect of NDK5 suppression is a more constrained

metabolism (the kernel dimension is 9 for the initial

network and 8 for the new version). In terms of

biochemical functions, our theoretical minimal metab-

olism allows the independent syntheses of phospho-

lipid, dCTP and TTP (EFM 1, 8 and 9, respectively,

table 4), whereas its modified version links the

biosynthesis of phospholipid either to dCTP or TTP

biosynthesis, due to the combination of ES 13 and 17

(figure 5). Since enzymes of the same ES usually share

common regulatory circuits (Klamt & Stelling 2003),

the smaller network could eventually represent a less

advantageous condition, forcing a tied regulation of
Phil. Trans. R. Soc. B (2007)
former independent metabolic fluxes. On the other

hand, the concerted biosynthesis of phospholipid and

dCTP (EFM 10) or TTP (EFM 11) (table 4) might be

a fundamental way of preparing cell division through

the stoichiometric linking of membrane synthesis and

DNA replication, in a more primary way than other

sophisticated mechanisms observed in living cells (for a

review, see Boeneman & Crooke 2005). In fact, this

property of our minimal metabolic network represents

a structural link between the three Gánti’s subsystems

(Gánti 2003; Szathmáry et al. 2005): the metabolic

connection between physical boundary and genetic

replication in a minimal cell.

We compared our minimal enzyme set with the list

of essential M. genitalium genes provided by Glass et al.
(2006) (last column on the enzyme and reaction

section of table 4). Some activities have no correspon-

dence with any annotated gene. Non-orthologous gene

displacement could explain some of such discrepan-

cies. In some other instances (e.g. phospholipid or

ribose biosyntheses), the obvious explanation is that

M. genitalium can use a different set of source substrates

and/or it performs an anabolism displaying a different

set of sink products. Nonetheless, most of the

enzymatic steps in our minimal set have a direct

correspondence with proteins encoded by essential
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genes in M. genitalium, with a few exceptions, as
follows. (i) The biochemical function of lactate
dehydrogenase (LDH) in our minimal metabolism
can be replaced with many different solutions (e.g. an
electron transport chain). (ii) CDS acts in the context
of phospholipid biosynthesis, and its essentiality
depends dramatically on the medium, which in the
above-mentioned experiment was a rich one (SP4
glucose broth). (iii) RPE catalyses an essential step in
pentose phosphate pathway and, as a consequence, this
activity participates in all the EFM related to
nucleotide anabolism (all except EFM 1, table 4);
thus, M. genitalium either takes up ribose from the
medium or catalyses the epimerase reaction with
an enzyme coded by a non-orthologous gene. (iv)
The same explanation applies to THY, an essential
activity for TTP biosynthesis (EFM 9 and 11), since
M. genitalium could either use thymine from the medium
or synthesize it with a non-orthologous enzyme.

In our analysis, we have defined, based on current
knowledge on natural metabolisms, a set of input
substrates and output products that would be needed
or rendered, respectively, by the proposed minimal
metabolism. As we have previously said, variations in
the hypothetical set of substrates provided by the
environment would lead to alternative, perhaps smaller,
minimal metabolisms. Since essentiality, viability and
minimal complexity are context-dependent concepts, it
would be worth exploring how the complexities of a
minimal metabolism and its corresponding environment
are related. We completely agree with the necessity to
define a ‘hierarchy of minimal cells’ as expressed by Luisi
et al. (2006, see especially footnote 2). That is, what
Phil. Trans. R. Soc. B (2007)
degree of complexity should the surrounding environ-
ment gain to compensate for the loss of an essential
component in a minimal metabolism? Is there an
optimum, limit or critical value in this relationship? All
these considerations will have deep implications, not only
for the design of a semi-synthetic minimal cell or the
speculations on primitive protocells, but also for our
understanding of biological processes such as symbiosis
and parasitism.
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